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ABSTRACT

In  the  Multi-Baseline  SAR  tomography  remote 
sensing  technique,  the  tomographic  resolution  is 
proportional to the vertical aperture component of the 
synthetic  antenna.  In  order  to  avoid  the  problem of 
obtaining aliased tomographic results when designing 
multi-baseline SAR acquisition geometries  using the 
fewest number of repeated radar tracks, it is necessary 
to process the data-set by advanced signal processing 
techniques  that  can  properly  process coherent  and 
distributed composed environments  SAR data. In this 
paper  the  Digital  Gabor  Transform  (DGT) 
decomposition  for  sparsity  seeking  and  the 
Compressed  Sensing  (CS)  for  signal  recovery 
techniques performance will be analyzed. Recovery in 
highly over-complete dictionaries leads to large-scale 
optimization  problems  that  can  be  successfully 
reached specially because of recent advances in linear 
and quadratic programming by Interior Point Methods 
(IPM). This paper considers the Convex Optimization 
(CVX) tomographic solution in order to process multi-
baseline  datasets  over  forested  environments,  in  a 
Fourier under-sampled configuration. In this situation, 
the  vertical  reflectivity  function  is  in  a  smooth 
domain.  The  DGT is  a  suitable  method  in  order  to 
generate  an  over-complete  dictionary  for  sparsity 
seeking. The CVX Second Order Cone Programming 
Solution (SOCPs) by IPM using a generic log-barrier 
algorithm  has  been  tested  in  order  to  optimize  the 
dictionary atoms. In particular the following recovery 
technique  has  been  implemented:  l1  norm 
minimization with quadratic constraints (L1QC). This 
technique has been validated over real forested areas 
pointing  out  the  better  performance  of  the  proposed 
solution in such a particular environment.

Index  Terms  —  SAR,  Tomography,  Digital  Gabor 
Transform  (DGT),  atomic  decomposition,  Convex 
Optimization  (CVX),  Second  Order  Cone  Programming 
(SOCP),  Interior  Point  Methods  (IPM),  Quadratic 
Constrained  Quadratic  Programming  (QCQP),   Path 

Following,  Log  Barrier,  Newton  Iteration,  Conjugate 
Gradient (CG), Compressed Sensing (CS)

1. INTRODUCTION

SAR  TOMOGRAPHY  extends  the  synthetic  aperture 
focusing  principles  in  the  elevation  direction.  In  order  to 
obtain  a  great  vertical  resolution so to distinguish among 
different  scattering  events  inside  a  complex  scattering 
scenario  like  forests,  it  is  necessary  to  design  vertical 
synthetic aperture antenna with a great extension. Indeed, to 
avoid  aliasing  problems.  In  order  to  achieve  good 
tomographic  results,  it  is  necessary  to  acquire  a  large 
number  of  parallel  tracks  distributed  within  the  vertical 
aperture  interval.  As  a  consequence  the multi-pass  SAR 
acquisitions, spanned during a long time frame, can induce 
the so called temporal decorrelation effect, that can defocus 
the  tomographic  map  [1  2].  in  order  to  avoid  this,  it  is 
necessary  to  exploit  repeated  pass  multi-baseline  SAR 
acquisitions with a minimum number of tracks [3], and after 
processing  the  acquired  data  with  powerful  signal 
processing techniques so to adequately compensate aliasing 
and resolution loss [4 5] Traditional approaches of signal or 
image  reconstruction  from  measured  data  follow  the 
Shannon sampling theorem, which states that the sampling 
rate must be twice the highest frequency standing inside the 
signal. This suggests that the number of collected samples 
(observations) of a discrete finite-dimensional signal should 
be a great number in order to reconstruct the vertical profile 
in  all  its  length  without  any  aliasing effects.  Compressed 
Sensing (CS) provides a new approach to perform a sparse 
data reconstruction, as required by multi-pass tomography 
in  under-sampled  configuration,  which  overcomes  this 
common wisdom. The theory predicts that certain signals or 
images can be recovered from what was previously believed 
to  be  highly  incomplete  measurements.  These  kind  of 
problems fall in two classes: those which can be recast as 
linear  programming,  and  those  which  can  be  recast  as  a 
Second  Order  Cone  Programming  (SOCP) approach  [6  – 
16]. The intermediate step, between the recovery made by 
the  Compressed  Sensing  and  the  existence  of  a  smooth 
function  that  is  therefore  not  sparse,  is  to  find  a  base 
through which this function is expressible as a sum of sparse 
functions. This paper considers the DGT decomposition in 
order  to  research  sparsity  and  each  function  of  the 
dictionary has been recovered by IPM. In this section some 



tomographic  results  are  reported  in  order  to  validate  the 
IPM optimization algorithm on airborne tomographic data 
sets.  The  validation  has  been  done  on  the  TropiSAR 
campaign over the France Guiana acquired in the P band. 
The  above  described  multi-baseline  dataset  has  been 
processed  in  order  to  research  the  differences  existing 
between  the  following  two  tomographic  super-resolution 
methods: the Capon filter and the IPM methods. The target 
of  this  letter  is  to  recast  the  above  described  Convex 
Optimization algorithm as a novel super-resolution method 
suitable to process environments prevalently constituted by 
forests.  The SOCP problem treated in this paper is closely 
related to a quadratic programing class and stands to have 
the following standard form:

minimize f 0x 

subject to f i x bi ;  i=1,,m

(1)

Where  x=x 1,, xn is  the  optimization  variable, 

f 0 :ℂnℂ is the objective function and f i :ℂ
nℂ  the are 

the  inequality  constrained  functions  and  the  parameters
c1, ,cm are the bounds of the constraints. Considering a 

quadratic  programming  approach,  the  following  recovery 
method from noisy data was used:

min∥x∥1 subject to∥y−Ax∥2 (2)

where ε bounds the data noise amount.
This  paper  considers  the  DGT  dictionary  in  order  to 
research the sparsity condition. Each such dictionary D is a 
collection  of  waveforms   ∈  where  γ  is  the  wave 
parameter. The decomposition of a signal vector s can so be:

s=∑
∈

a




(3)

The considered dictionaries are over-complete because they 
merges  complete  dictionaries,  forming  a  mega-dictionary 
consisting  of  several  types  of  waveforms.  Such  defined 
decomposition is non-unique because some elements in the 
dictionary have representations in terms of other elements. 
Because  of  the  upon  non-uniqueness  characteristic,  an 
adaptation  possibility  exists  in  order  to  research  the 
following tomographic conditions:
− Sparsity:  we  should  obtain  the  sparsest  possible 

representation  of  the  object,  the  one  with  the  fewest 
significant coefficient;

− Super-resolution:  we  should  obtain  a  resolution  of  
sparse objects in a much higher resolution if compared  
with the traditional non-adaptive approaches.

The DGT Decomposition of signals over family of functions 
that are well localized both in time and frequency has found 
applications  in  SAR Tomography  DSP.  In  this  paper  the 
DGT  transforms  are  exampled  as  tomographic  sparsity 
seekers  and  the  results  have  been  studied thoroughly.  To 
extract  information  from  complex  signals,  it  is  often 
necessary to adapt the time-frequency decomposition to the 
particular signal structures. A general time-frequency atoms 
family  can  be  generated  by  scaling,  translating  and 

modulating a function g t ∈L2ℂ , where g(t) is complex 

and  continuously  differentiable,  where  ∥g t ∥=1  and 
g 0 ≠0  The DGT of an 1-D signal  vector  is  defined  as 

follows: Consider the upon considered window function  g 
and the input signal  f of length L and define the parameter 
N=L/a. The DGT of the 1-D signal vector f is given by:

c m1,n1=∑
i=0

L−1

f l1 g l−an1 e
−2 ilm

M
(4)

In (4) f is the input data vector, g is the window function, a 
is the shift  length,  M is the number of channels,  L is the 
length of the transform to perform and c is an P×N array of 
coefficients.  The  output  is  a  vector  or  a  matrix  in  a 
rectangular  layout.  The  length  of  the  transform  is  the 
smallest multiple of a and M that is larger than the signal. 
The  function  f is  zero-extended  to  the  length  of  the 
transform. The window vector  g is  a  vector  of  numerical 
values, in this paper, a Gaussian window has been used. In 
order  to  reconstruct  the  recovered  signal,  the  following 
Inverse  Digital  Gabor  Transform  (IDGT)  has  to  be 
performed:

f l1=∑
n=0

N−1

∑
m=0

M−1

cm1,n−1 e
2 ilm

M ⋅g l−an1.
(5)

In (5) c is the recovered array of coefficient,  g is the same 
window function used to transform the original signal and a 
is the time shift length.

2. EXPERIMENTAL RESULTS

In  this  section  some  tomographic  results  are  reported  in 
order  to  validate  the  IPM  optimization  algorithm  on 
airborne  tomographic  data  sets.  The  validation  has  been 
done on the TropiSAR campaign over the France Guiana 
acquired in the P and L-bands. The above described multi-
baseline dataset has been processed in order to research the 
differences existing between the following two tomographic 
super-resolution  methods:  the  Capon  filter  and  the  IPM 
optimization method. The target of this letter is to recast the 
above  described  SOCP  algorithm  as  an  efficient  super- 
resolution  method  suitable  to  process  environments 
prevalently constituted by forests.

Fig.1:  In  this  picture a  full-polarimetric  vegetation 
environment  Range-Azimuth SAR image is depicted. The 



blue  and  the  red  lines  are the  two  trajectory  where  the 
tomographic processing has been performed.

Fig.2: In this figure  the Capon and  the  SOCP log-barrier 
optimization tomographic results are compared. The  tested 
environment is referred to  the one tracked in the azimuth 
direction by the blue line in Fig. 1 depicted. The IPM result 
is better because no noise and side-lobes are present.  The 
vegetation  consistency  and  a  better  ground  top-height 
separation are observable.

(a) (b)

(c) (d)

Fig.3: Vertical cross-range profiles (in meters) referred to 
the  tomographic  results  in  Fig.  2  (UP)  and  (DOWN) 
depicted. All plots has been normalized and rescaled to the 
dB energy scale and are referred to the vertical lines linked 
in Fig.2 by the red color as (a) and (b). The red function is 
referred to the Capon filter result and the blue function is 

the result optimized by the IPM method.

Fig.4: In  this figure  the Capon and  the  SOCP log-barrier 
optimization tomographic results are compared. The  tested 
environment  is  referred  to  the  one  tracked  in  the range 
direction by the red line in Fig. 1 depicted. The IPM result 
is  better  because  no  massive  noise  and  side-lobes  are 
present. The vegetation consistency and a better ground top-
height separation are observable. 

The  experimental  results  consists  in  two  tomographic 
processing, the first one consists in a range-height plane, in 
Fig. 2 visible and the second consists in an azimuth-height 
plane  in  Fig.  4  visible.  In  Fig.  1  the  polarimetric  range-
azimuth  energy  map  is  depicted,  the  blue  and  red  lines 
drives the paths from witch the tomographic planes has been 
estimated. In Fig. 3 (a), (b), (c) and (d)  and Fig. 4 (a), (b), 
(c),  and (d) four vertical  reflectivity profiles are depicted, 
the functions are complex vectors and the modulus in the 
linear  and  logarithmic  scale  has  been  presented.  The 
functions are referred to the red vertical lines in Fig. 2 and 
Fig.  3  depicted.  The  IPM  results  are  estimated  after 
performing a DGT over-complete decomposition.  The IPM 
result is better than the Capon result because the S/N ratio is 
massive  higher  and  it  is  observable  a  vertical  resolution 
enhancement

3. CONCLUSIONS

In  this  paper  a  novel  super-resolution  method  to  perform SAR 
tomography applied to multi-baseline airborne data was proposed. 
The method is the Second Order Cone Programming Interior Point 
Method optimization that has been validate on the TropiSAR data 
set collected in the P-band by ONERA over Paracou situated in the 
French  Guyana.  This  paper  shows  several  contrasted  results 
obtained  by two super-resolution algorithms. The first one is the 
Capon  non  parametric  spectral  estimator,  and  the  second  is  the 
Convex  Optimization  algorithm  (CVX)  that  uses  second  order 
cones  as  constraints  functions  that  implements  the  Gabor  over-
complete Dictionary. The validation was performed processing the 



above mentioned multi-baseline dataset. The two signal processing 
techniques has been compared in order to validate the IPM signal 
processing  ideal to  optimize  tomographic  profiles  in  a  smooth 
configuration.  Observing  the  results  the  considered  signal 
processing method confirms the above mentioned qualities.

(a) (b)

(c) (d)

Fig.5: Vertical cross-range profiles (in meters) referred to 
the  tomographic  results  in  Fig.  2  (UP)  and  (DOWN) 
depicted. All plots has been normalized and rescaled to the 
dB  energy  scale  and  are  referred  to  the   vertical  lines 
linked in Fig.2 by the red color  as (a)  and (b).  The red 
function is referred to the Capon filter result and function 
is the result optimized by the IPM method, after a DGT 
over-complete  Decomposition.  The  IPM  result  is  better 
than  the  Capon  result  because  the  S/N ratio  is  massive 
higher  and  it  is  observable  a  vertical  resolution 
enhancement.
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